Boltzmann, Ludwig: Vorlesungen über Gastheorie. Bd. 1. Leipzig, 1896.[Gleich. 162] § 18. Gleichungen für den stationären Zustand. Multiplicirt man dies mit m und dividirt durch d o, so Der Mittelwerth x der nach der Abscissenrichtung ge- Dies ist offenbar auch die x-Componente der Geschwindigkeit Durch die Substitutionen 158 verwandelt sich der Zähler Man sieht sofort, dass das erste Glied verschwindet, das [Gleich. 162] § 18. Gleichungen für den stationären Zustand. Multiplicirt man dies mit m und dividirt durch d o, so Der Mittelwerth ξ̅ der nach der Abscissenrichtung ge- Dies ist offenbar auch die x-Componente der Geschwindigkeit Durch die Substitutionen 158 verwandelt sich der Zähler Man sieht sofort, dass das erste Glied verschwindet, das <TEI> <text> <body> <div n="1"> <div n="2"> <pb facs="#f0147" n="133"/> <fw place="top" type="header">[Gleich. 162] § 18. Gleichungen für den stationären Zustand.</fw><lb/> <p>Multiplicirt man dies mit <hi rendition="#i">m</hi> und dividirt durch <hi rendition="#i">d o</hi>, so<lb/> erhält man die Partialdichte der ersten Gasart gleich<lb/> 160) <hi rendition="#et"><formula/>.</hi></p><lb/> <p>Der Mittelwerth <hi rendition="#i">ξ̅</hi> der nach der Abscissenrichtung ge-<lb/> schätzten Geschwindigkeitscomponente aller in <hi rendition="#i">d o</hi> liegenden<lb/> Moleküle <hi rendition="#i">m</hi> ist:<lb/> 161) <hi rendition="#et"><formula/>.</hi></p><lb/> <p>Dies ist offenbar auch die <hi rendition="#i">x</hi>-Componente der Geschwindigkeit<lb/> des Schwerpunktes der in <hi rendition="#i">d o</hi> befindlichen Gasmenge erster Art.<lb/> Würde sich ein der <hi rendition="#i">y z</hi>-Ebene paralleles Flächenelement mit<lb/> dieser Geschwindigkeit in der Abscissenrichtung fortbewegen,<lb/> so würden durch dasselbe gleich viel Moleküle nach der einen<lb/> wie nach der anderen Seite hindurchgehen, wie unmittelbar<lb/> aus dem Begriffe der mittleren Geschwindigkeit folgt. Man<lb/> kann also <hi rendition="#i">ξ̅</hi> als die Geschwindigkeit bezeichnen, mit welcher<lb/> sich die in <hi rendition="#i">d o</hi> enthaltene Menge des ersten Gases in der<lb/> Abscissenrichtung fortbewegt.</p><lb/> <p>Durch die Substitutionen 158 verwandelt sich der Zähler<lb/> des Ausdruckes 161 in<lb/><hi rendition="#c"><formula/>.</hi></p><lb/> <p>Man sieht sofort, dass das erste Glied verschwindet, das<lb/> zweite aber sich auf <hi rendition="#i">u d n</hi> reducirt. Es ist also<lb/> 162) <hi rendition="#et"><formula/>.</hi><lb/> Da <hi rendition="#fr">x</hi> die relative Geschwindigkeit eines Gasmoleküls gegen<lb/> ein mit der Geschwindigkeit <hi rendition="#i">u</hi> bewegtes Flächenelement und <hi rendition="#i">f</hi><lb/> eine gerade Function von <hi rendition="#fr">x</hi> ist, so sieht man sofort, dass<lb/> durch jenes Flächenelement, wenn es ⊥ zur <hi rendition="#i">x</hi>-Axe steht,<lb/> durchschnittlich von der ersten Gasart ebensoviel ein-, als<lb/> austritt.</p> </div><lb/> </div> </body> </text> </TEI> [133/0147]
[Gleich. 162] § 18. Gleichungen für den stationären Zustand.
Multiplicirt man dies mit m und dividirt durch d o, so
erhält man die Partialdichte der ersten Gasart gleich
160) [FORMEL].
Der Mittelwerth ξ̅ der nach der Abscissenrichtung ge-
schätzten Geschwindigkeitscomponente aller in d o liegenden
Moleküle m ist:
161) [FORMEL].
Dies ist offenbar auch die x-Componente der Geschwindigkeit
des Schwerpunktes der in d o befindlichen Gasmenge erster Art.
Würde sich ein der y z-Ebene paralleles Flächenelement mit
dieser Geschwindigkeit in der Abscissenrichtung fortbewegen,
so würden durch dasselbe gleich viel Moleküle nach der einen
wie nach der anderen Seite hindurchgehen, wie unmittelbar
aus dem Begriffe der mittleren Geschwindigkeit folgt. Man
kann also ξ̅ als die Geschwindigkeit bezeichnen, mit welcher
sich die in d o enthaltene Menge des ersten Gases in der
Abscissenrichtung fortbewegt.
Durch die Substitutionen 158 verwandelt sich der Zähler
des Ausdruckes 161 in
[FORMEL].
Man sieht sofort, dass das erste Glied verschwindet, das
zweite aber sich auf u d n reducirt. Es ist also
162) [FORMEL].
Da x die relative Geschwindigkeit eines Gasmoleküls gegen
ein mit der Geschwindigkeit u bewegtes Flächenelement und f
eine gerade Function von x ist, so sieht man sofort, dass
durch jenes Flächenelement, wenn es ⊥ zur x-Axe steht,
durchschnittlich von der ersten Gasart ebensoviel ein-, als
austritt.
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |