Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Gerstner, Franz Joseph von: Handbuch der Mechanik. Bd. 1: Mechanik fester Körper. Prag, 1831.

Bild:
<< vorherige Seite

Aufsteigen und Einsinken zusammenhängender Bögen.
sten Bogens über den zweiten sey 1/5 der ganzen Last der ersten Brückenhälfte, also
Z = 1000 Ztr. und der Coeffizient für den Reibungswiderstand m = [Formel 1] . Diese Werthe

Form [Formel 2] , und beiderseits die Wurzel gezogen, folgt sehrFig.
11.
Tab.
20.

nahe 7/8 (p -- b) = b, mithin b = 7/15 p.
Führen wir für den 2ten Hülfsbogen C G' dieselbe Rechnung aus, so ist nach der Gleichung I
seine horizontale Spannung = [Formel 3] (IX), welche auch = [Formel 4] seyn muss. Diese Glei-
chung mit [Formel 5] multiplizirt gibt [Formel 6] oder sehr nahe 1 + [Formel 7] = 1 + [Formel 8] ,
mithin [Formel 9] . Es ist aber auch die Länge des Bogens C G' nach der Gleichung II =
= A + [Formel 10] (X), welche = A + [Formel 11] aus VI seyn muss. Diese Gleichung mit
[Formel 12] multiplizirt, gibt [Formel 13] , oder weil
[Formel 14] , [Formel 15] und [Formel 16] sehr kleine Grössen sind, auch sehr nahe
[Formel 17] und abgekürzt 2 [Formel 18] . In dieser
Gleichung für [Formel 19] den oben gefundenen Werth gesetzt, ist [Formel 20]
und beiderseits die Wurzel gezogen [Formel 21] sehr nahe, folglich b = 7 q.
Wir können nunmehr das Einsinken der einen Brückenhälfte, welches von der darauf gebrachten
zufälligen Last Z bewirkt wird, auf folgende Art berechnen:
Die horizontale Zugkraft des herabgedrückten Bogens in VII oder [Formel 22] muss offenbar dem hori-
zontalen Zuge des gehobenen Bogens in IX oder [Formel 23] das Gleichgewicht halten, und zugleich den
Widerstand der Reibung überwältigen, der auf den Rollen in C der Bewegung entgegensteht. Die
Rollen werden aber von der einen Seite mit der Last P + Z und von der andern Seite mit P senk-
recht gedrückt, wir können den Widerstand der Reibung dem mten Theile der gesammten Last oder
= m (2 P + Z) setzen. Für den Zustand des Gleichgewichtes erhalten wir daher die Gleichung
[Formel 24] = [Formel 25] + m (2 P + Z) (XI).
Da nun die Länge der Kettenbögen für die belastete und unbelastete Brücke dieselbe bleibt,
so ist die Summe der Ausdrücke VIII und X die ganze Länge der Kette für die belastete Brücke
den beiden Bögen BC und C G gleich, welches die Gleichung
[Formel 26] gibt, woraus sich leicht die Glei-
chung (B + p)2 + (B -- q)2 = 2 B2 oder [Formel 27] = 2 ableiten lässt, welche mit
Vernachlässigung der zweiten Potenzen von [Formel 28] und [Formel 29] den Werth p = q gibt, d. h. das Einsinken
p des einen Hülfsbogens ist dem Aufsteigen q des andern gleich
.
Werden noch in der Gleichung XI alle Glieder mit [Formel 30] multiplizirt, so
ist auch (P + Z) (1 -- [Formel 31] ) = P (1 + [Formel 32] ) + [Formel 33] (2 P + Z) (1 + [Formel 34] ). Wird hierin
statt q der gefundene Werth p gesetzt, und die Gleichung gehörig reduzirt, so ergibt sich
[Formel 35] , und weil b = 7/15 p gefunden wurde, so beträgt das wirkliche Einsinken des
belasteten Brückenfeldes [Formel 36] .
61 *

Aufsteigen und Einsinken zusammenhängender Bögen.
sten Bogens über den zweiten sey ⅕ der ganzen Last der ersten Brückenhälfte, also
Z = 1000 Ztr. und der Coeffizient für den Reibungswiderstand m = [Formel 1] . Diese Werthe

Form [Formel 2] , und beiderseits die Wurzel gezogen, folgt sehrFig.
11.
Tab.
20.

nahe ⅞ (p — b) = b, mithin b = 7/15 p.
Führen wir für den 2ten Hülfsbogen C G' dieselbe Rechnung aus, so ist nach der Gleichung I
seine horizontale Spannung = [Formel 3] (IX), welche auch = [Formel 4] seyn muss. Diese Glei-
chung mit [Formel 5] multiplizirt gibt [Formel 6] oder sehr nahe 1 + [Formel 7] = 1 + [Formel 8] ,
mithin [Formel 9] . Es ist aber auch die Länge des Bogens C G' nach der Gleichung II =
= A + [Formel 10] (X), welche = A + [Formel 11] aus VI seyn muss. Diese Gleichung mit
[Formel 12] multiplizirt, gibt [Formel 13] , oder weil
[Formel 14] , [Formel 15] und [Formel 16] sehr kleine Grössen sind, auch sehr nahe
[Formel 17] und abgekürzt 2 [Formel 18] . In dieser
Gleichung für [Formel 19] den oben gefundenen Werth gesetzt, ist [Formel 20]
und beiderseits die Wurzel gezogen [Formel 21] sehr nahe, folglich β = 7 q.
Wir können nunmehr das Einsinken der einen Brückenhälfte, welches von der darauf gebrachten
zufälligen Last Z bewirkt wird, auf folgende Art berechnen:
Die horizontale Zugkraft des herabgedrückten Bogens in VII oder [Formel 22] muss offenbar dem hori-
zontalen Zuge des gehobenen Bogens in IX oder [Formel 23] das Gleichgewicht halten, und zugleich den
Widerstand der Reibung überwältigen, der auf den Rollen in C der Bewegung entgegensteht. Die
Rollen werden aber von der einen Seite mit der Last P + Z und von der andern Seite mit P senk-
recht gedrückt, wir können den Widerstand der Reibung dem mten Theile der gesammten Last oder
= m (2 P + Z) setzen. Für den Zustand des Gleichgewichtes erhalten wir daher die Gleichung
[Formel 24] = [Formel 25] + m (2 P + Z) (XI).
Da nun die Länge der Kettenbögen für die belastete und unbelastete Brücke dieselbe bleibt,
so ist die Summe der Ausdrücke VIII und X die ganze Länge der Kette für die belastete Brücke
den beiden Bögen BC und C G gleich, welches die Gleichung
[Formel 26] gibt, woraus sich leicht die Glei-
chung (B + p)2 + (B — q)2 = 2 B2 oder [Formel 27] = 2 ableiten lässt, welche mit
Vernachlässigung der zweiten Potenzen von [Formel 28] und [Formel 29] den Werth p = q gibt, d. h. das Einsinken
p des einen Hülfsbogens ist dem Aufsteigen q des andern gleich
.
Werden noch in der Gleichung XI alle Glieder mit [Formel 30] multiplizirt, so
ist auch (P + Z) (1 — [Formel 31] ) = P (1 + [Formel 32] ) + [Formel 33] (2 P + Z) (1 + [Formel 34] ). Wird hierin
statt q der gefundene Werth p gesetzt, und die Gleichung gehörig reduzirt, so ergibt sich
[Formel 35] , und weil b = 7/15 p gefunden wurde, so beträgt das wirkliche Einsinken des
belasteten Brückenfeldes [Formel 36] .
61 *
<TEI>
  <text>
    <body>
      <div n="1">
        <div n="2">
          <div n="3">
            <p><pb facs="#f0515" n="483"/><fw place="top" type="header"><hi rendition="#i">Aufsteigen und Einsinken zusammenhängender Bögen</hi>.</fw><lb/>
sten Bogens über den zweiten sey &#x2155; der ganzen Last der ersten Brückenhälfte, also<lb/>
Z = 1000 Ztr. und der Coeffizient für den Reibungswiderstand m = <formula/>. Diese Werthe<lb/><note xml:id="note-0515" prev="#note-0514" place="foot" n="*)">Form <formula/>, und beiderseits die Wurzel gezogen, folgt sehr<note place="right">Fig.<lb/>
11.<lb/>
Tab.<lb/>
20.</note><lb/>
nahe &#x215E; (p &#x2014; b) = b, mithin b = 7/15 p.<lb/>
Führen wir für den 2<hi rendition="#sup">ten</hi> Hülfsbogen C G' dieselbe Rechnung aus, so ist nach der Gleichung I<lb/>
seine horizontale Spannung = <formula/> (IX), welche auch = <formula/> seyn muss. Diese Glei-<lb/>
chung mit <formula/> multiplizirt gibt <formula/> oder sehr nahe 1 + <formula/> = 1 + <formula/>,<lb/>
mithin <formula/>. Es ist aber auch die Länge des Bogens C G' nach der Gleichung II =<lb/>
= A + <formula/> (X), welche = A + <formula/> aus VI seyn muss. Diese Gleichung mit<lb/><formula/> multiplizirt, gibt <formula/>, oder weil<lb/><formula/>, <formula/> und <formula/> sehr kleine Grössen sind, auch sehr nahe<lb/><formula/> und abgekürzt 2 <formula/>. In dieser<lb/>
Gleichung für <formula/> den oben gefundenen Werth gesetzt, ist <formula/><lb/>
und beiderseits die Wurzel gezogen <formula/> sehr nahe, folglich <hi rendition="#i">&#x03B2;</hi> = 7 q.<lb/>
Wir können nunmehr das Einsinken der einen Brückenhälfte, welches von der darauf gebrachten<lb/>
zufälligen Last Z bewirkt wird, auf folgende Art berechnen:<lb/>
Die horizontale Zugkraft des herabgedrückten Bogens in VII oder <formula/> muss offenbar dem hori-<lb/>
zontalen Zuge des gehobenen Bogens in IX oder <formula/> das Gleichgewicht halten, und zugleich den<lb/>
Widerstand der Reibung überwältigen, der auf den Rollen in C der Bewegung entgegensteht. Die<lb/>
Rollen werden aber von der einen Seite mit der Last P + Z und von der andern Seite mit P senk-<lb/>
recht gedrückt, wir können den Widerstand der Reibung dem m<hi rendition="#sup">ten</hi> Theile der gesammten Last oder<lb/>
= m (2 P + Z) setzen. Für den Zustand des Gleichgewichtes erhalten wir daher die Gleichung<lb/><formula/> = <formula/> + m (2 P + Z) (XI).<lb/>
Da nun die Länge der Kettenbögen für die belastete und unbelastete Brücke dieselbe bleibt,<lb/>
so ist die Summe der Ausdrücke VIII und X die ganze Länge der Kette für die belastete Brücke<lb/>
den beiden Bögen BC und C G gleich, welches die Gleichung<lb/><formula/> gibt, woraus sich leicht die Glei-<lb/>
chung (B + p)<hi rendition="#sup">2</hi> + (B &#x2014; q)<hi rendition="#sup">2</hi> = 2 B<hi rendition="#sup">2</hi> oder <formula/> = 2 ableiten lässt, welche mit<lb/>
Vernachlässigung der zweiten Potenzen von <formula/> und <formula/> den Werth p = q gibt, d. h. <hi rendition="#g">das Einsinken<lb/>
p des einen Hülfsbogens ist dem Aufsteigen q des andern gleich</hi>.<lb/>
Werden noch in der Gleichung XI alle Glieder mit <formula/> multiplizirt, so<lb/>
ist auch (P + Z) (1 &#x2014; <formula/>) = P (1 + <formula/>) + <formula/> (2 P + Z) (1 + <formula/>). Wird hierin<lb/>
statt q der gefundene Werth p gesetzt, und die Gleichung gehörig reduzirt, so ergibt sich<lb/><formula/>, und weil b = 7/15 p gefunden wurde, so beträgt das wirkliche Einsinken des<lb/>
belasteten Brückenfeldes <formula/>.</note><lb/>
<fw place="bottom" type="sig">61 *</fw><lb/></p>
          </div>
        </div>
      </div>
    </body>
  </text>
</TEI>
[483/0515] Aufsteigen und Einsinken zusammenhängender Bögen. sten Bogens über den zweiten sey ⅕ der ganzen Last der ersten Brückenhälfte, also Z = 1000 Ztr. und der Coeffizient für den Reibungswiderstand m = [FORMEL]. Diese Werthe *) *) Form [FORMEL], und beiderseits die Wurzel gezogen, folgt sehr nahe ⅞ (p — b) = b, mithin b = 7/15 p. Führen wir für den 2ten Hülfsbogen C G' dieselbe Rechnung aus, so ist nach der Gleichung I seine horizontale Spannung = [FORMEL] (IX), welche auch = [FORMEL] seyn muss. Diese Glei- chung mit [FORMEL] multiplizirt gibt [FORMEL] oder sehr nahe 1 + [FORMEL] = 1 + [FORMEL], mithin [FORMEL]. Es ist aber auch die Länge des Bogens C G' nach der Gleichung II = = A + [FORMEL] (X), welche = A + [FORMEL] aus VI seyn muss. Diese Gleichung mit [FORMEL] multiplizirt, gibt [FORMEL], oder weil [FORMEL], [FORMEL] und [FORMEL] sehr kleine Grössen sind, auch sehr nahe [FORMEL] und abgekürzt 2 [FORMEL]. In dieser Gleichung für [FORMEL] den oben gefundenen Werth gesetzt, ist [FORMEL] und beiderseits die Wurzel gezogen [FORMEL] sehr nahe, folglich β = 7 q. Wir können nunmehr das Einsinken der einen Brückenhälfte, welches von der darauf gebrachten zufälligen Last Z bewirkt wird, auf folgende Art berechnen: Die horizontale Zugkraft des herabgedrückten Bogens in VII oder [FORMEL] muss offenbar dem hori- zontalen Zuge des gehobenen Bogens in IX oder [FORMEL] das Gleichgewicht halten, und zugleich den Widerstand der Reibung überwältigen, der auf den Rollen in C der Bewegung entgegensteht. Die Rollen werden aber von der einen Seite mit der Last P + Z und von der andern Seite mit P senk- recht gedrückt, wir können den Widerstand der Reibung dem mten Theile der gesammten Last oder = m (2 P + Z) setzen. Für den Zustand des Gleichgewichtes erhalten wir daher die Gleichung [FORMEL] = [FORMEL] + m (2 P + Z) (XI). Da nun die Länge der Kettenbögen für die belastete und unbelastete Brücke dieselbe bleibt, so ist die Summe der Ausdrücke VIII und X die ganze Länge der Kette für die belastete Brücke den beiden Bögen BC und C G gleich, welches die Gleichung [FORMEL] gibt, woraus sich leicht die Glei- chung (B + p)2 + (B — q)2 = 2 B2 oder [FORMEL] = 2 ableiten lässt, welche mit Vernachlässigung der zweiten Potenzen von [FORMEL] und [FORMEL] den Werth p = q gibt, d. h. das Einsinken p des einen Hülfsbogens ist dem Aufsteigen q des andern gleich. Werden noch in der Gleichung XI alle Glieder mit [FORMEL] multiplizirt, so ist auch (P + Z) (1 — [FORMEL]) = P (1 + [FORMEL]) + [FORMEL] (2 P + Z) (1 + [FORMEL]). Wird hierin statt q der gefundene Werth p gesetzt, und die Gleichung gehörig reduzirt, so ergibt sich [FORMEL], und weil b = 7/15 p gefunden wurde, so beträgt das wirkliche Einsinken des belasteten Brückenfeldes [FORMEL]. 61 *

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
TCF (tokenisiert, serialisiert, lemmatisiert, normalisiert)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: http://www.deutschestextarchiv.de/gerstner_mechanik01_1831
URL zu dieser Seite: http://www.deutschestextarchiv.de/gerstner_mechanik01_1831/515
Zitationshilfe: Gerstner, Franz Joseph von: Handbuch der Mechanik. Bd. 1: Mechanik fester Körper. Prag, 1831, S. 483. In: Deutsches Textarchiv <http://www.deutschestextarchiv.de/gerstner_mechanik01_1831/515>, abgerufen am 28.09.2020.